

LA-UR-18-31128

Approved for public release; distribution is unlimited.

Title: Applications of Analytic Models to Spent Fuel Cask Analysis

Author(s): Remedes, Tyler Joseph

Intended for: PhD Proposal Presentation

Issued: 2018-11-28

EST.1943

Applications of Analytic Models to Spent Fuel Cask Analysis

November 30, 2018

Tyler J. Remedes Mentors:

Dr. Scott Ramsey

Dr. Jim Baciak

Mr. Joe Schmidt

Committee:

Dr. Andreas Enqvist

Dr. Justin Watson

External Member:

Dr. Heather Ray

Biography

- 2014 B.S. Engineering Physics from Colorado School of Mines
 - -2 papers
 - -1 patent
- 2017 M.S. Nuclear Engineering from University of Florida
 - 2 Internships at LANL
 - Plasma Physics
 - "Pulse Dilation Technique on Gas Cherenkov Detectors for application in Inertial Confinement Fusion"
 - Award of Recognition
 - Theoretical Physics
 - "Determining the Validity of Diffusion Approximated Flux Values"
 - Poster Presentation at ANS Winter Conference 2016
 - Presentation at ANS Student Conference 2018
 - Currently Working with LANL for my PhD

Proposal Agenda

- Introduction
 - Motivation
 - Project Goals
- Background
 - HI-STORM 100
 - Neutron Transport
 - Symmetry Analysis
 - Sensitivity Analysis
- Current Work
 - -MCNP
 - Analytic
- Future Work

- Explores the novel intersection of three areas of physics and mathematics
 - Neutron transport theory
 - Symmetry analysis techniques (Lie Group)
 - Sensitivity analysis
- Motivation
 - Simulation has become a powerful tool for analyzing complex systems
 - These tools model continuous calculus using algebraic equations
 - Introduces assumptions and approximations into a simulation program
 - Need to ensure simulations do not violate assumptions and approximations
 - Users are also capable of making errors
 - Simplifications in modeling
 - Developing input files
 - Comparison with experimental data is the best way to ensure simulations were conducted correctly
 - Sometimes experimental data is difficult to obtain if any exists at all

Such as with spent fuel casks

- When no experimental data is available
 - We can use analytic or semi-analytic models to compare simulations against
 - If the analytic results agree with simulation results
 - Confidence in gained in simulation results and in model input
 - The user understands the physics that is occurring
 - User is capable of analyzing simulation results appropriately
 - If the two disagree
 - The user learns:
 - Important physics was overlooked
 - Input may be wrong
 - The user learns about the problem
 - Leads to a deeper understanding and more in-depth analysis

- Comparisons between computational and analytic results are further exemplified through a sensitivity analysis
- Computational sensitivity analysis
 - Requires identifying possible parameters that could affect the results
 - Developing a new model for each parameter variation
 - Result, is resource intensive
- Analytic sensitivity analysis
 - Requires identifying possible parameters that could affect the results
 - By using a generalized form of a directional derivative, parameter sensitivities can be calculated directly
 - Result, is less intensive than for computational sensitivity analysis
- When the results of sub-region and sensitivity analysis compare favorably, confidence is gained in computational analysis

 The aforementioned processes are generic and can be applied to any system governed by differential equations

As a proof of principal, these processes will be applied to a Holtec HI-

STORM 100 spent fuel cask

- The goal of current work is to seek a sub-region of a detailed problem
 - Simplifications are applied to the Boltzmann transport equation (BTE) for neutrons
 - Solutions are compared to computational solutions of the sub-region
 - Captures elemental physical processes occurring in the subregion of the full-scale problem

https://holtecinternational.com/productsandservices/wasteandfuelmanagement/dry-cask-and-storage-transport/historm/hi-storm-100/

Introduction: Project Goals

- To develop a methodology for using analytic models to verify simulation results
 - 1. Identification of sub-regions where BTE can be applied
 - 2. Solutions to BTE
 - Symmetry analysis procedure
 - 3. Comparison of computation and analytic results
 - 4. Sensitivity analysis of simulation models
 - 5. Sensitivity analysis of analytic models
 - 6. Comparison of simulation and analytic sensitivity analysis results
 - 7. Analysis of underlying physics of HI-STORM 100 spent fuel cask

 The proposed methodology develops a novel procedure for analyzing simulation results when no experimental data can be acquired

Background

Background: HI-STORM 100

- Simulation has become prevalent in spent fuel cask analysis
 - Radiation shielding capabilities
 - Fuel shifting
 - Imaging the interior of a cask
- Holtec International HI-STORM 100 spent fuel cask was chosen
 - Most used spent fuel cask storage system
 - Used to store fuel from boiling water reactors (BWR) or pressurized water reactors (PWR)
- Provides radiation protection, heat transfer, environmental protection, fuel security, and accident protection (i.e. if the cask were dropped)

Background: HI-STORM 100

- The overpack:
 - Inner anulus of concrete
 - Outer shell of carbon steel
 - Neutron and gamma shielding above and below fuel region
 - Inner channels for air to flow through
 - Multi-purpose canister (MPC) holds spent fuel in center of overpack
- Concrete provides:
 - Neutron shielding
 - Protection in the event the cask is dropped
- Steel provides:
 - Gamma shielding
 - Structure to the cask
 - Protection to overpack and MPC

Background: HI-STORM 100

- Three main types of MPC
 - MPC-24: Used for PWR fuel
 - MPC-32: Used for PWR fuel (chosen for proposed work)
 - MPC-68: Used for BWR fuel
- Honey-comb, stainless steel structure supports fuel and provides heat transfer
- Boral pad (neutron absorber) placed between cells

Background: Neutron Transport

- The focus of current work is to identify a sub-region where analytic models can be used to verify simulation results
 - The proposed work is focused on neutron transport
 - Analytic models are based on the BTE
- Using a heuristic approach to derive BTE in phase-space defined by dV, dE, d $\widehat{\Omega}$, and dt
- BTE is a balance equation
 - Gain Mechanics
 - a) All neutron sources in dV
 - b) Neutrons streaming into dV through an infinitesimal surface dS
 - c) Neutrons in a different phase space entering dV, dE, d $\hat{\Omega}$, dt
 - 2. Loss Mechanics
 - a) Neutrons leaking out of dV through dS
 - b) Neutrons undergoing an interaction in dV

Background: Neutron Transport

Source term

•
$$(a) = \left[\int_{V} d^{3}r \, s(\boldsymbol{r}, E, \widehat{\boldsymbol{\Omega}}) \right] dE d\widehat{\boldsymbol{\Omega}}$$

Interaction term

•
$$(e) = \left[\int_{V} d^{3}r \, \Sigma_{t}(\mathbf{r}, E) \varphi(\mathbf{r}, E, \widehat{\Omega}) \right] dE d\widehat{\Omega}$$

In-scattering term

•
$$(c) = \left[\int_{V} d^{3}r \int_{4\pi} d\widehat{\Omega} \int_{0}^{\infty} dE' \Sigma_{S}(E' \to E, \widehat{\Omega}' \to \widehat{\Omega}) \varphi(\mathbf{r}, E', \widehat{\Omega}') \right] dE d\widehat{\Omega}$$

Streaming term

•
$$(d) - (b) = \left[\int_{V} d^{3}r \widehat{\Omega} \cdot \varphi(r, E, \widehat{\Omega}) \right] dE d\widehat{\Omega}$$

$$(a) + (b) + (c) - (d) - (e) = 0$$

Background: Neutron Transport

The steady-state BTE for neutrons is:

$$\widehat{\boldsymbol{\Omega}} \cdot \boldsymbol{\nabla} \varphi(r, E, \widehat{\boldsymbol{\Omega}}) + \Sigma_t \varphi(r, E, \widehat{\boldsymbol{\Omega}})$$

$$= \int_{4\pi} d\widehat{\boldsymbol{\Omega}} \int_0^{\infty} dE'^{\Sigma_s} (E' \to E, \widehat{\boldsymbol{\Omega}}' \to \widehat{\boldsymbol{\Omega}}) \varphi(r, E', \widehat{\boldsymbol{\Omega}}') + s(r, E, \widehat{\boldsymbol{\Omega}})$$

- First-order, linear, integro-differential equation
 - One of the most difficult types of problems to solve directly
- Applying assumptions allow us to solve the BTE
 - Any assumption we apply will not hold across the full problem
- Identifying a sub-region allows us to apply assumptions
 - In an appropriate sub-region, assumptions will hold
 - The BTE can be reduced to a tractable form
- If assumptions can be relaxed, we can use a more accurate form of the BTE

- Symmetry analysis becomes useful

- Many partial-differential equation solving techniques rely on manipulating an equation into a form for which a solution is known
 - Becomes difficult or impossible as equations become more complex
- Symmetry analysis provides a more standardized approach
 - Change of variables
 - The equation is mapped into a new coordinate system
 - Invariance
 - When an equation is unchanged under the action of an operation
 - Solutions to new equation will be solutions to old equation

Invariance Example

$$F\left(x, y, \frac{\partial y}{\partial x}\right) = \frac{\partial y}{\partial x} - e^{x-y} = 0$$

Transformation operations:

$$x = \tilde{x} + s$$
, $y = \tilde{y} + s$, $\frac{\partial y}{\partial x} = \frac{\partial \tilde{y}}{\partial \tilde{x}}$

Applying transformation operations

$$F\left(x,y,\frac{\partial y}{\partial x}\right) = \frac{\partial \tilde{y}}{\partial \tilde{x}} - e^{(\tilde{x}+s)-(\tilde{y}+s)} = \frac{d\tilde{y}}{d\tilde{x}} - e^{\tilde{x}-\tilde{y}} = \tilde{F}\left(\tilde{x},\tilde{y},\frac{\partial \tilde{y}}{\partial \tilde{x}}\right)$$

- The two functions are the same
 - An example of a translation symmetry

- We are looking for symmetries which leave our equation invariant
- These symmetries can be found systematically
- Introducing an example:

$$F\left(x, y, \frac{dy}{dx}\right) = \frac{dy}{dx} - \frac{y}{x} - \tan\left(\frac{y}{x}\right) = 0$$

• For simplicity, we define $z \coloneqq \frac{dy}{dx}$ and the transformations

$$\tilde{x} \equiv \alpha(x, y, z; \ \varepsilon), \tilde{y} \equiv \beta(x, y, z; \ \varepsilon), \tilde{z} \equiv \gamma(x, y, z; \ \varepsilon)$$

- Determining general transformations is difficult if not impossible!
- Sophus Lie discovered the localized evaluation is equivalent to finding α , β , and γ
 - Through use of Taylor expansion

https://en.wikipedia.org/wiki/Sophus Lie

• Taking the Taylor expansion about $\varepsilon = 0$

$$\tilde{F} = F + \epsilon \frac{\partial \tilde{F}}{\partial \epsilon} \Big|_{\epsilon=0} + \frac{\epsilon^2}{2} \frac{\partial^2 \tilde{F}}{\partial \epsilon^2} \Big|_{\epsilon=0} + \mathcal{O}(\epsilon^3)$$

Evaluating the derivatives

$$\tilde{F} - F = \varepsilon \left[\eta \frac{\partial}{\partial x} + \phi \frac{\partial}{\partial y} + \zeta \frac{\partial}{\partial z} \right] F + \varepsilon^2 \left[\eta \frac{\partial}{\partial x} + \phi \frac{\partial}{\partial y} + \zeta \frac{\partial}{\partial z} \right]^2 F + \mathcal{O}(\varepsilon^3);$$

$$\eta = \frac{\partial \alpha}{\partial \varepsilon}, \phi = \frac{\partial \beta}{\partial \varepsilon}, \zeta = \frac{\partial \gamma}{\partial \varepsilon}$$

We define the prolonged group generator

$$prX \equiv \eta \frac{\partial}{\partial x} + \phi \frac{\partial}{\partial y} + \zeta \frac{\partial}{\partial z}$$

• An invariant operation on F means $\tilde{F} - F = 0$

• To solve $prX\{F\} = 0$, we return to our example

$$prX{F} = \eta \left[\frac{y}{x^2} + \frac{y}{x^2} sec^2 \left(\frac{y}{x} \right) \right] + \phi \left[\frac{1}{x} + \frac{1}{x} sec^2 \left(\frac{y}{x} \right) \right] + \zeta = 0$$

• A solution for η , ϕ , and ζ is

$$\eta = x, \qquad \phi = y, \qquad \zeta = 0$$

• The group generator is then

$$X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial x}$$

- To construct our similarity variable, we apply X to some function, F(x,y) and set $X{F} = 0$
- The previous step ensures symmetries found in *F*, will be the same as the symmetries in our problem

$$X{F} = x \frac{\partial F}{\partial x} + y \frac{\partial F}{\partial y} = 0$$

Rearranging terms produces our characteristic system

$$\frac{\partial F}{\partial} = \frac{\partial x}{x} = \frac{\partial y}{y}$$

- Solving the characteristic system will yield constants
 - Function of independent and dependent variables
- These constants are called similarity variables
 - Used to simply our original problem
- Solving

$$\frac{\partial F}{\partial y} = \frac{\partial x}{\partial x}$$
, $\frac{\partial x}{\partial x} = \frac{\partial y}{\partial y}$

yield

$$F = constant, \qquad r = \frac{y}{x}$$

The derivative can be re-written as

$$\frac{\partial y}{\partial x} = \frac{\partial r}{\partial x}x + r$$

Re-writing the original equation in terms of r and x

$$\frac{\partial r}{\partial x}x - \tan(r) = 0$$

This is a separable equation with the solution

$$r = \sin^{-1}(cx)$$
; $c \equiv constant$

• Re-writing the solution in the original co-ordinate system $y = x \sin^{-1}(cx)$

We now arrive at the solution to the original equation

- Procedure:
- 1. Re-write $F\left(x, y, \frac{\partial y}{\partial x}\right)$ as F(x, y, z)
- 2. Apply the prolonged group generator to set up determining equations
- 3. Solve the determining equations for η , ϕ and ζ
- Apply the completed group generator to find the determining system
- 5. Solve the characteristic system to find similarity variables
- 6. Re-express *F* in terms of the similarity variables and arrive at a simplified expression
- 7. Solve the simplified expression
- 8. Re-express the solution to the simplified expression in the original co-ordinate system

Background: Sensitivity Analysis

- A physical system is modeled by linear or non-linear differential equations
 - Define the system's response to an input based on parameters
- Typically, there is a level of uncertainty attached to each parameter
- The practice of ascertaining the behavior of a system in response to parameter variations is known as sensitivity analysis
- In this work, we use a procedure developed by Dan Cacuci
 - Based on a direct correspondent between local sensitivity analysis and Gâteaux-derivative (G-derivative)
 - Cacuci's method is more general and less computationally intensive than other methods
- Sensitivities can be used to
 - Rank parameters by importance
 - Asses the change in response due to parameter variation
 - Perform uncertainty analysis

Background: Sensitivity Analysis

G-derivative

$$\delta R(x_0; h) \equiv \lim_{t \to 0} \frac{R(x_0 + th) - R(x_0)}{t}$$

- The G-derivative is a generalization of a directional derivative
- Only need the first G-derivative of our functions to find sensitivities
- Cacuci developed a procedure called the Forward Sensitivity Analysis Procedure (FSAP)
 - Solving the Forward Sensitivity Equations (FSE) determines the system's response to a single variation
 - Needs to be repeated for different variations of parameters
 - Repeated solving of FSE for each parameter variation constitutes the FSAP

Background: FSAP

A system is described by coupled operator equations

$$L(\alpha)u = Q[\alpha(x)]$$

 Boundary conditions are used to solve the previous system of equations

$$B(\alpha)u - A(\alpha) = 0$$

Taking the first G-derivative yields

$$L(\alpha^{0})h_{u} + [L'_{\alpha}(\alpha^{0})u^{0}]h_{\alpha} - \delta Q(\alpha^{0}; h_{\alpha}) = 0$$

$$B(\alpha^{0})h_{u} + [B'(\alpha^{0})u^{0}]h_{\alpha} - \delta A(\alpha^{0}; h_{\alpha}) = 0$$

• Solving for h_u allows us to find the sensitivities

$$\delta R(h) \equiv R'_{\alpha} h_{\alpha} + R'_{u} h_{u}$$

Consider the following:

$$D\frac{d^2\varphi}{dx^2} - \Sigma_a \varphi + S = 0; x \in (-a, a)$$

with the boundary condition

$$\varphi(\pm a) = 0$$

A detector placed within the slab would read

$$R(\varphi, \alpha) \equiv \Sigma_d \varphi(b); 0 < b < |\alpha|$$

• The parameters are:

$$\alpha \equiv (\Sigma_a, D, S, \Sigma_d)$$

The nominal flux is found from solving the diffusion approximation

$$\varphi^{0}(x) = \frac{S^{0}}{\Sigma_{a}^{0}} \left(1 - \frac{\cosh\left(b\sqrt{\frac{\Sigma_{a}^{0}}{D^{0}}}\right)}{\cosh\left(a\sqrt{\frac{\Sigma_{a}^{0}}{D^{0}}}\right)} \right)$$

The nominal response is then

$$R^0(\varphi^0, \boldsymbol{\alpha}^0) = \Sigma_d^0 \varphi^0(x = b)$$

We define the variation of the parameters to be

$$\boldsymbol{h}_{\alpha} \equiv (\delta \Sigma_{a}, \delta D, \delta S, \delta \Sigma_{d})$$

We apply the G-derivative to the response

$$\delta R(\varphi^0, \boldsymbol{\alpha}^0; \boldsymbol{h}) = \frac{d}{dt} R((\varphi^0, \boldsymbol{\alpha}^0) + t\boldsymbol{h}); h \equiv (h_{\varphi}, h_{\alpha})$$

Evaluating yields

$$\delta R(\varphi^0, \boldsymbol{\alpha}^0; \boldsymbol{h}) = \boldsymbol{R'}_{\alpha}(\varphi^0, \boldsymbol{\alpha}^0)\boldsymbol{h}_{\alpha} + \boldsymbol{R'}_{\varphi}(\varphi^0, \boldsymbol{\alpha}^0)\boldsymbol{h}_{\varphi}$$

The first term on the RHS is the "direct-effect" term

$$\mathbf{R'}_{\alpha}(\varphi^0, \mathbf{\alpha}^0)\mathbf{h}_{\alpha} = \delta \Sigma_d \varphi^0(x = b)$$

The second term is the "indirect-effect" term

$$\mathbf{R'}_{\varphi}(\varphi^0, \boldsymbol{\alpha}^0)\mathbf{h}_{\varphi} = \Sigma_d^0 h_{\varphi}(x=b)$$

- The direct-effect term can be calculated
- h_{φ} needs to be found

Use the definitions of the FSE

$$L(\boldsymbol{\alpha}^{0})h_{\varphi} + [L'_{\alpha}(\boldsymbol{\alpha}^{0})\varphi^{0}]\boldsymbol{h}_{\alpha} = \mathcal{O}(\boldsymbol{h}_{\alpha})^{2}; L(\boldsymbol{\alpha}^{0}) \equiv D^{0}\frac{d^{2}}{dx^{2}} - \Sigma_{\alpha}^{0}$$

With the boundary condition

$$h_{\varphi}(\pm \alpha) = 0$$

The second term on the LHS is

$$[L'_{\alpha}(\boldsymbol{\alpha}^{0})\varphi^{0}]\boldsymbol{h}_{\alpha} \equiv \delta D \frac{d^{2}\varphi^{0}}{dx^{2}} - \delta \Sigma_{a}\varphi^{0} + \delta S$$

• Solving the boundary value problem for h_{arphi}

$$h_{\varphi}(x)$$

$$= C_1(\cosh(xk) - \cosh(ak)) + C_2(x\sinh(xk)\cosh(ak) - a\sinh(ak)\cosh(xk));$$

$$C_{1} = \frac{\left(\frac{\delta \Sigma_{a} S^{0}}{\Sigma_{a}^{0}} - \delta S\right)}{\Sigma_{a}^{0} \left(\cosh(ak)\right)}, C_{2} = \frac{\left(\frac{\delta D}{D^{0}} - \frac{\delta \Sigma_{a}}{\Sigma_{a}^{0}}\right) S^{0}}{2\sqrt{D^{0} \Sigma_{a}^{0} \left(\cosh(ak)\right)^{2}}}, k = \sqrt{\frac{\Sigma_{a}^{0}}{D^{0}}}$$

We now can write the expression for the sensitivities

$$\delta R((\varphi^0, \boldsymbol{\alpha}^0); \boldsymbol{h}) = \delta \Sigma_d \varphi^0(x = b) + \Sigma_d^0 h_{\varphi}(x = b)$$

- Repeat this process for all variations of parameters in $m{h}_{arphi}$
- Knowing the importance of each parameter can
 - Guide future model development to decrease uncertainty in the most important parameters
 - Possibly reduce analytic models to include only the most important parameters
 - Reduce computational resources needed to evaluate a problem
- Results from the FSAP will be compared to computational sensitivity analysis results
 - In computational work, various simulation inputs will be made
 - Parameters will be varied to investigate the effects on simulation results

Current Work

Current Work: MCNP

- The HI-STORM 100 spent fuel cask was simulated in MCNP
- Geometry was simplified for simulations

Current Work: Simulation Reduction

• Due to the complexity of the cask, $\frac{1}{8}$ of the cask was simulated

Current Work: Source term

- Source term for MCNP simulations and analytic models need to be found
- Next Generation Safeguards Initiative (NGSI) has a library of spent fuel compositions
 - Made for use with MCNP
 - Running MCNP in initialization mode creates a table detailing the composition of materials in the problem
- Compositions were used for ORIGEN-S models
 - 0-dimensional decay
 and irradiation code

Current Work: Sub-region Identification

- A single fuel cell was chosen as the extent of the sub-region
 - Neutron flux through a Boral pad
 - Relatively monoenergetic flux
 - High thermal neutron absorption cross section

Still need to determine how transport will be handled

- Source spectrum is comprised mainly of fast neutrons
 - Maybe energy dependence of BTE can be handled in one or two groups?
- Comparing the cross sections of materials to determine how energy dependence is handled

 A two-group model allows for treatment of physics in fast and thermal regions separately

- The diffusion equation is a common representation of the BTE
 - There are known solutions

- The mean free path is on the order of (or higher than) the thickness of our Boral pad (~0.25 cm)
- BTE is a more appropriate choice of model

• The threshold between thermal and fast groups needs to be set

- Below 1eV, absorption processes comprise approximately 100% of interactions
- Setting the threshold at 1eV allows for further assumptions in each region to hold

- Two-group BTE
- Fast group (above 1eV)

$$\widehat{\Omega}_{x} \frac{\partial \phi_{1}}{\partial x} + \Sigma_{t,1} \phi_{1} = \Sigma_{s,11} \phi_{1} + S_{1}$$

Assumptions:

$$\begin{split} -S_1 &= 0 \\ -\Sigma_{t,1} &\approx \Sigma_{s,1} \\ -\Sigma_{R,12} &\equiv \Sigma_{s,1} - \Sigma_{s,11} = \Sigma_{s,12} \end{split}$$

$$\widehat{\Omega}_{x} \frac{\partial \phi_{1}}{\partial x} + \Sigma_{R,12} \phi_{1} = 0$$

 The only mechanisms present are due to scattering Thermal group (below 1eV)

$$\widehat{\Omega}_{x} \frac{\partial \phi_{2}}{\partial x} + \Sigma_{t,2} \phi_{2} = \Sigma_{s,12} \phi_{1} + \Sigma_{s,22} \phi_{2} + S_{2}$$

Assumptions:

$$-S_2 = 0$$

$$-\Sigma_{t,2} \approx \Sigma_{a,2}$$

$$-\Sigma_{s,22} = 0$$

$$\widehat{\Omega}_{x} \frac{\partial \phi_{2}}{\partial x} + \Sigma_{a,2} \phi_{2} = \Sigma_{R,12} \phi_{1}$$

 The only source of neutrons are those down-scattered from the fast group

Current Work: Cross Section Handling

- Group averaged cross sections were calculated
 - From Duderstadt and Hamilton

$$\langle \Sigma_{x} \rangle = \frac{\int_{\Sigma_{g-1}}^{\Sigma_{g}} \phi_{g} \Sigma_{x}}{\int_{\Sigma_{g-1}}^{\Sigma_{g}} \phi_{g}}$$

- The removal cross section governs the probability that a neutron will undergo a scattering event and be removed from group 1
- Lewis defines an approximation for the removal cross section

$$\Sigma_{R,12} \approx \frac{1}{n} \Sigma_S$$

- *n* is the number of collisions for a neutron to slow down from one energy to another
 - In Boral, $n \approx 125$ collisions for a neutron to slow from 1MeV to 1eV

Current Work: Analytic Solution

The solutions to the fast and thermal group equations

$$\phi_1(x) = \phi_f e^{-\frac{\Sigma_{R,12}x}{\mu}}$$

$$\phi_2(x) = \frac{\phi_f \Sigma_{R,12} e^{-\frac{\Sigma_{a,2} x}{\mu} + \frac{(\Sigma_{a,2} - \Sigma_{R,12}) x}{\mu}}}{\Sigma_{a,2} - \Sigma_{R,12}} + \frac{\phi_t (\Sigma_{a,2} - \Sigma_{R,12}) - \phi_f \Sigma_{R,12}}{\Sigma_{a,2} - \Sigma_{R,12}} (e^{-\frac{\Sigma_{a,2} x}{\mu}})$$

- ϕ_f is the portion of the source flux above 1eV
- ϕ_t is the portion of the source flux below 1eV
- A final correction was made to the analytic solutions
 - Since Boral pads are placed between two sources, a second source term was geometrically attenuated from the opposite side of the pad and added to each flux correspondingly

Current Work: Analytic Solution

Current Work: Analytic Solution

Current Work: Comparing Results

• The flux from MCNP shows a similar trend to the analytic solution

Current Work: Results

- What was learned
 - Input Correctness
 - Original mesh tally location extended 0.2 mm into stainless steel
 - Affect on flux was small
 - · Original results appeared to be correct but did not match analytic results
 - Result was the tally location was fixed
 - Underlying physics
 - Flux is mainly fast
 - Scattering dominated
 - Slowing down processes is most prevalent
 - Thermal flux is strongly attenuated by Boral
 - » Hardens the flux
 - Future Investigations
 - Temperature affects on cross section
 - Doppler broadening of cross sections

Future Work

Future Work: Year 1

- Year 1 goals
 - More detailed MCNP geometry will be developed
 - Detailed fuel bundles
 - · Change air vent structure
 - To show the versatility of the method, five to six more regions will be identified and analytic models will be compared with MCNP results
 - Flux through cement anulus
 - Flux through carbon steel shell
 - Flux through lid bottom plate
 - Flux through cement above MPC
 - Dose at cask surface (can be compared to literature)

Future Work: Year 2

- Year 2 goals
 - Identification of reoccurring parameters in analytic models for sensitivity analysis
 - Σ_t , Σ_a , Σ_s , Σ_R
 - MCNP sensitivity analysis of parameters
 - Vary cross section data through manual addition of uncertainty
 - $S(\alpha, \beta)$ cards to vary the cross section data based on temperature
 - FSAP sensitivity analysis
 - Common analytic equations from sub-regions
 - Comparison of sensitivity analysis results
 - Development of final methodology of analysis process
 - Focused on spent fuel cask modeling

Future Work: Papers and Presentations

- 3 expected papers
 - Symmetry analysis of simplified form of BTE
 - Verification of spent fuel cask simulations using analytic models
 - Sensitivity Analysis of neutron transport equations
- Presentations
 - American Nuclear Society
 - American Physical Society Division of Nuclear Physics

Future Work: Timeline

Task	Fall '18	Spr '19	Sum '19	Fall '19	Spr '20	Sum '20	Fall '20
Identification of sub-regions	X						
Development of detailed MCNP geometry	X						
Apply theory to sub-regions		X	X				
Comparison of results			X				
ID of input parameters for Sensitivity Analysis				X	X		
Find sensitivities of BTE using FSAP					Х	Х	
Write dissertation						X	X

Acknowledgements

I would like to thank Los Alamos National Labs for funding my work and providing mentorship in current and future work.

Works Cited

- [1] "Hi-storm fsar," tech. rep., Holtec International.
- [2] C. R. Priest, "Dosemitry, activation, and robotic instrumentation damage modeling of the hotec hi-storm 100 spent nucler fuel system," Master's thesis, North Carolina State University, 2014.
- [3] Y. F. Chen and et al., "Surface dose rate calulations of a spent fuel cask by using mavric and its comparison with sas4 and mcnp," Nuclear Technology, vol. 175, 2011.
- [4] C. Greulich and et al., "High energy neutron transmission analysis of dry cask storage," Nuclear Inst. and Methods in Physics Research, A, vol. 874, pp. 5–11, 2017.
- [5] C. J. Wharton, E. A. Seabury, A. J. Cafrey, and P. L. Winston, "Summary report: Inl cdcis cask scanner testing at doel, belgium," tech. rep., Idaho Natioal Lab, 2013.
- [6] R. W. Jr., M. Fensina, and H. Trellue, "Total neutron emission generation and characterization for a next generation safegaurds initiative spent fuel library," *Progress in Nuclear Engineering*, vol. 80, pp. 45–73, 2015.
- E. E. Lewis, Fundamentals of Nuclear Reactor Physics. Academic Press, 2008.
- [8] J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis. Wiley-Interscience, 1976.
- [9] E. J. Alibright and et al., "Symmetry analysis of differential equations: A primer," Tech. Rep. LA-14502, Los Alamos National Lab, 2018.
- [10] B. J. Cantwell, Indroduction to Symmetry Analysis. Cambridge, 2002.
- [11] P. J. Olver, Applications of Lie Groups to Differential Equations. Springer, 1991.

Works Cited

- [12] H. Wei and J. J. S. M. A. Nearing, "A comprehensive sensitivity analysis framework for model evaluation and improvement using a case study of the rangeland hydrology and erosion model," *Transactions of the ASABE*, vol. 50, no. 3, pp. 945–53, 2007.
- [13] A. Saltelli and et. al., Sensitivity Analysis in Practice. John Wiley and Sons, New York, 2004.
- [14] T. Turanyi and H. Rabitz, Sensitivity Analysis. Wiley, Inc., Chichester, 2000.
- [15] D. G. Cacuci, Sensitivity and Uncertainty Analysis: Theory. Chapman and Hall/CRC, 2003.
- [16] D. G. Cacuci, M. I. Ionescu-Bujor, and I. M. Navon, Sensitivity and Uncertainty Analysis: Applications to Large-Scale Systems. Chapman and Hall/CRC, 2005.
- [17] W. F. G. van Rooijen and D. Lathouwers, "Sensitivity analysis for delayed neutron data," Annals of Nuclear Engineering, vol. 35, pp. 2186–2194, 2008.
- [18] S. D. Ramsey, The Extinction Probabilities of Nuclear Assemblies: A Sensitivity Study. PhD thesis, University of Illinois at Urbana-Champaign, 2009.
- [19] D. B. Pelowitz and et al., MCNP6 User Manual. Los Alamos National Lab, ver. 1 ed.
- [20] J. K. Shultis and R. E. Faw, "An mcnp primer," tech. rep., Kansas State University, 2011.

Works Cited

- [21] Y. Gao and et al., "Raditaion dose rate ditributions of spent fuel dry casks esitmated with mavric based on detailed geometry and continuous-energy models," Annals of Nuclear Engineering, vol. 117, pp. 84–97, 2018.
- [22] A. Y. Chen and et al., "A comparison of dose rate calculations for a spent fuel storage cask by using mcnp and sas4," Annals of Nuclear Engineering, vol. 35, no. 2296-2305, 2008.
- [23] "Scale: A comprehensive modeling and simulation suite for nuclear safety analysis and design," tech. rep., Oak Ridge National Lab, 2011.
- [24] S. M. Bowman and I. C. Gauld, "Origin arp primer: How to perform isotopic depletion and decay calculations with scale/origen," tech. rep., Oak Ridge National Lab, 2010.

Questions

EST.1943

Backup Slides

Symmetry Analysis: Ensuring the Derivative is Preserved

$$z = \frac{dy}{dx}$$

$$z - \frac{dy}{dx} = 0$$

$$z * dx - dy = 0$$

$$prX(z * dx - dy) = 0$$

$$zprX(dx) + dxprX(z) - prX(dy) = 0$$

• Use prX(dx) = d(prX(x))

$$\zeta + \left[\frac{\partial \eta}{\partial x} + \frac{\partial \eta}{\partial y}z\right]z - \left[\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y}z\right] = 0$$
$$0 + \left[1 + 0z\right]z - \left[0 + z\right] = 0$$

Symmetry Analysis: Re-writing the derivative

$$\frac{\partial y}{\partial x} = \frac{\partial}{\partial x}(rx) = \frac{\partial r}{\partial x}x + r$$

Sensitivity Analysis: G-Derivatives

- Taking $e^0 = (u^0, \alpha^0)$
- The most general and fundamental concept for the definition of the sensitivity of a response to variations in the system parameters is the G-derivative

$$\delta R(e^0; h) \equiv \left\{ \frac{d}{dt} \left[R(e^0 + th) \right] \right\}_{t=0} = \lim_{t \to 0} \frac{R(e^0 + th) - R(e^0)}{t}$$

• The G-differential of $\delta R(e^0; h)$ is related to the total variation $[R(e^0 + th) - R(e^0)]$ of R at e^0 through the relation

$$[\mathbf{R}(\mathbf{e}^0 + t\mathbf{h}) - \mathbf{R}(\mathbf{e}^0)] = \delta \mathbf{R}(\mathbf{e}^0; \mathbf{h}) + \Delta \mathbf{h}, \text{with } \lim_{t \to 0} \frac{[\Delta(t\mathbf{h})]}{t} = 0$$